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Motivation and research goal
Introduction
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Research goal:
Simulate the environment near rubble pile objects, including granular dynamics and non-gravitational effects

Small body close proximity environment
§ Uneven mass distribution

• irregular gravity field
• internal voids and high porosity (rubble pile)

§ Weak gravity field, non-gravitational effects are 
relevant

• SRP
• gas ejecta and coma (active asteroids and 

comets)
§ Orbiting dust and particles
§ Granular surface (boulders and pebbles)

Credits: JAXA/Hayabusa Credits: NASA/NEAR

Credits: NASA/OSIRIS-Rex Credits: JAXA/Hayabusa 2/Minerva-II1-B
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Software architecture
Implementation and methods
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Contact dynamicsGravitational dynamics
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§ N-body self-gravity (point mass sources)
• direct N-to-N integration
• Barnes-Hut octree (CUDA/GPU parallel)

§ central field (shape-based model)
• Polyhedron (mesh)

§ 6 DOF rigid body dynamics
§ bodies of arbitrary shape
§ collision detection
§ contact methods

• hard-body, constraint-based
• soft-body, penalty-based
• constraint-based with compliance and 

damping

N-body gravitational problem with contact and collisions
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Gravitational dynamics: Barnes-Hut octree (CUDA/GPU parallel)
Implementation and methods
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§ Nodes correspond to cubes in the physical space
§ Homogenous Spatial Recursive sub-division (until each extremal node has 1 or 0 particles)
§ Based on the work by M. Burtscher and K. Pingali

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019

θ =
𝑟
𝐷accuracy
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Gravitational dynamics: performance
Implementation and methods
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CPU: Intel Core i7 6500U 3.1GHz
GPU: Nvidia GeForce 940M

N log(N)

Computational time Accuracy (depends on 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚)
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CPU: Intel Core i7 6500U 3.1GHz
GPU: Nvidia GeForce 940M

N log(N)

Computational time

N<1000 : direct N2
N>1000 : BH-GPU

Accuracy (depends on 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚)

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Rigid-body dynamics
Implementation and methods
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N bodies, each with

§ position 𝒓&
§ rotation quaternion 𝝆&
§ velocity 𝒓̇&
§ angular velocity 𝝎&

§ mass 𝑚&

§ tensor of inertia 𝐈&

§ collision surface Ω&

𝝎'
𝒓̇'

𝝎(

𝒓̇(

𝒓̇)

𝝎)

Generalized coordinates
𝒒 = 𝒓&* , 𝝆&*

*
∈ ℝ+,

𝒗 = 𝒓̇*& , 𝝎&
* * ∈ ℝ-,

𝐌 = [𝑚&] ∈ ℝ-,×-,
𝐉 = [𝐈&] ∈ ℝ-,×-, Shape:

• Triangulated mesh
• Convex hull
• Common geometry 

(sphere, box, cone,…)

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Contact dynamics: non-smooth dynamics (NSC)
Implementation and methods
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§ Equations of motion are formulated as Differential Variational Inequalities (DVI)
§ Hard-body model
§ Complementarity-based
§ Impulse-momentum formulation
§ Suitable for problems with discontinuities (rigid contacts)

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• Restitution coefficient

Credits: Tasora et al 2013

6
𝛾
𝒗𝒏0𝟏 = 𝑓 𝒒, 𝒗, 𝑡, 𝛾
𝒒𝒏0𝟏 = 𝑔 𝒒, 𝒗

(contact) as solution of CCP

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Contact dynamics: smooth dynamics (SMC)
Implementation and methods
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§ Equations of motion are formulated as Differential Algebraic equations (DAE)
§ Soft-body model (DEM)
§ Penalty-based
§ Force-acceleration formulation
§ Suitable for problems with no discontinuities (no rigid contacts)

;𝒙̇ = 𝑓 𝒙, 𝑡
𝒈 𝒙, 𝑡 = 0

ODE + AE (kinematic constraint)

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• {Young modulus, Poisson ratio, restitution coefficient} 

or {stiffness and damping (normal and tangential)}  
and constitutive model (Hooke, Hertz)

In this case stiffness and damping are estimated 
based on constitutive law of material

Credits: Tasora et al 2013

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Contact dynamics: hybrid model
Implementation and methods
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§ Equations of motion are formulated as Differential Variational Inequalities (DVI)
§ Soft-body model (compliance and damping)
§ Complementarity-based
§ Impulse-momentum formulation
§ Suitable for problems with discontinuities 

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• Restitution coefficient
• Stiffness and damping (normal, tangential, rolling, spinning), 

rolling friction and constitutive model

Credits: Tasora et al 2013

6
𝛾
𝒗𝒏0𝟏 = 𝑓 𝒒, 𝒗, 𝑡, 𝛾
𝒒𝒏0𝟏 = 𝑔 𝒒, 𝒗

(contact) as solution of CCP

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Contact dynamics: summary
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NSC SMC Hybrid

Formulation
Equations of motion DVI DAE DVI

Contact model hard soft soft

Performance

Computational time (single time step)

Size of time step

Reproducing non-rigid contact dynamics

Handling complex shapes

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019
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Contact dynamics: tuning the parameters
Implementation and methods
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Hybrid model SMC (DEM)

© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019



j p l . n a s a . g o v

Small body environment

15© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019

Credits: JAXA/Hayabusa 2

Credits: JAXA/Hayabusa 2/Minerva-II1-B

ASTEROID MODEL

SRP
dust/particles
ejecta
coma

OTHER EFFECTS

SURFACE AND 
GRANULAR TERRAIN
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Asteroid model
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Shape
§ equilibrium shape
§ given mesh

Internal structure
§ full rubble-pile
§ monolithic core

Shape and internal structure
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Full rubble-pile
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Shape
§ given mesh
§ equilibrium shape

Internal structure
§ full rubble-pile
§ monolithic core

Monolithic core
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Credits: JAXA/Hayabusa 2
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Other effects: solar radiation pressure
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SUN

with SRP
with no SRP
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SUN

with SRP
with no SRP
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Validation scenario
Other effects: solar radiation pressure
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Validation scenario
Other effects: solar radiation pressure
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Surface and granular terrain

28© 2019 California Institute of Technology. Government sponsorship acknowledged.Jan 14th, 2019

Creation of terrain
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Lander touch down
Surface and granular terrain
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Surface and granular terrain
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Hopper



j p l . n a s a . g o v

Conclusion
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FINAL HIGHLIGHTS
§ Handles complex-shaped bodies
§ State-of-the-art methods for gravitational dynamics: Barnes-Hut parallel GPU
§ State-of-the-art methods for contact dynamics: both hard- and soft-contact models
§ Great flexibility of models/methods and implementation

FUTURE WORK AND ONGOING COLLABORATIONS
§ Go on with validation/benchmarking and developing effort (with Chrono::Engine team, Univ. Parma)
§ Rubble pile aggregation / reconfiguration (with OCA)
§ Lander/soil interaction and lander/rover mobility
§ Planetary rings dynamics
§ Rubble pile gravity field
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Gravitational dynamics: direct N-to-N integration
Implementation and methods
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𝒓&2 = 𝒓2 − 𝒓&

𝑚& 𝒓̈& = 𝐺 B
23',25&

,
𝑚& 𝑚2
𝑟&2
( 𝒓&2

𝒓&

𝒓2

𝒓&2 𝑚2

𝑚&

𝑥

𝑦

N equations of motion

Features of the dynamical system
§ No analytical solution for the 

gravitational motion of N bodies
§ Highly non-linear (chaotic) behavior
§ Strong dependency on initial conditions
§ Slow dynamics: characteristic time 

𝑇~ '
67

(with 𝐺 = 6.67 ⋅ 108'' 9!

:; <"
)

Features of the numerical problem
§ Initial value problem
§ Integration time step can be big             

𝑑𝑡 < *
)
= '

) 67

(𝑑𝑡~10( 𝑠 for typical asteroids densities)
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Numerical integration: available methods
Implementation and methods
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§ Time-steppers:
• Symplectic methods (semi-implicit Euler, leapfrog)
• Runge Kutta methods (RK45, explicit Euler, implicit Euler, trapezoidal, Heun)
• Newmark, Hilber-Hughes-Taylor

§ Solvers:
• Iterative solvers
• Direct solvers

Suited for gravitational problem
Higher order
Suited for FEA problems

Most commonly used: 
good for both DVI and 
DAE problems

Non-smooth dynamics (NSC)
Equations of motion are formulated as Differential Variational Inequalities (DVI)

Smooth dynamics (SMC)
Equations of motion are formulated as a Differential Algebraic Equations (DAE)
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